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DEFORMABLE TEMPLATES FOR CIRCLE RECOGNITION

L.Mure.ganl, R.Mureganz, G.Ososkov, Yu.Panebratsey

An algorithm for the circle recognition, using deformable templates, was carried out and
its performance was studied. The displacement of the points from circles and the presence of
noise that appear in real situations were taken into account. The deformable templates algo-
rithm is initialized by Hough transform, which performs a rough evaluation of parameters.
However due to inefficiency of the standard Hough transform, a new fast Hough transform
procedure was proposed with an automatic choice of the appropriate cut on histograms and
handling of splitting peaks.

Having the approximate number of arms and the corresponding initial values of the para-
meters from the Hough transform as input, a neural network finds circles with high resolution.
To avoid getting stuck into local minima we decrease the interaction between the arms and use
the simulated annealing procedure where the system is allowed to thermalize for a sequence of
temperature according to the Boltzmann distribution. Besides we penalize the case in which an
elastic circle stopped its evolution having not enough points on it.

Simulated data were used to study the efficiency of the algorithm depending on such factors
as the noise level, displacements of the points from circles, the number of points per circle and
the distance between the centre of two overlapped circles. Results show the satisfactory robust- -
ness of our algorithm to background contaminations. Then this technique was successfully
applied to real data obtained in Au-Pb interactions from the RICH detectors used in
CERES/NA4S experiment.

The investigation has been performed at the Laboratory of High Energies, JINR.

IlpumeHenne Merona nedopMupyeMbIX 06pa3LoB
IS Pacro3HaBaHHA OKPYXHOCTe#
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Naxo onucanue anroputMa pacno3HasaHHi OKPYXHOCTEH METOXOM NE(OPMHPYEMBIX obpas-
1I0B H M3YYEHO NMOBEACHHE AIMOPUTMa B 3aBHCHMOCTH OT OHA H pa3bpoca H3MEPEHHBIX TOYEK.
Ins neMUMATH3AIHH METOAA AehOPMUPYEMBIX OGPA3LIOB NIPEABAPHTENEHO IPHMEHAETCH 1Ipeos-
pasopanne Xatha, nossonsiomee rpy6o oueHHTs napameTpsl. M3-3a HeadextuHOCTH CTaHaap-
THOro mnpeoGpasoBanus Xada 6bila npelnoxeHa ero GwicTpas MOOH(HKALME C aBTO-
MAaTHYECKHM BHIGOPOM Moporos o6pe3aHua rucTorpamM u o6paboTkoil criyyaes CABOCHHBIX
nukos. HadankHhle 3Ha4EHNS MapaMeTpos, MOMYuEHHHIE ¢ MOMOLUBI0 MpeoBpasosanns Xada,
HCTOML30BATHCh KAK BXOAHbIE W1 HEHPOHHOH CETH, SBOMIOUMS KOTOpOil NO3BOMANA HAlTH
OKPYXKHOCTH ¢ Gonmee BBICOKHM paspeiieHHeM. UTOGH M36eXaTh CKATHIBAHME B JIOKATbHbI
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MHHHMYM 3HEPIeTHYECKOMH (YHKLIMH CETH, Mbl YMEHBLUATH B3aHMOINEHCTBHE MEXILY OOpasLiaMu
M IPHUMEHWIH NIPOLEAYPY HMHTHPOBAHHOTO OTXHIa, KOTAA CHCTEMA «OCThIBACT», NPOXOAS MO-
CIIEIOBATENILHOCTh TEMMNEPATYp B COOTBETCTBHH C pacnpencnieHHeM bonbumana. [ToMHMo 31010,
6b1H BBencHH WTpadHble QYHKLHH Ha CTy4aH, KOTIA Ha AAaCTHYHOH OKPYXHOCTH NPH OCTa-
HOBKE ee 3BOJTIOLMH OKa3biBAETCA CITHUIKOM Mano Tovek. Ha MomesbHbIx faHHbIX Obl1a H3yueHa
3¢peXTHBHOCTh AIMOPHTMa B 3aBUCHMOCTH OT YPOBKA WIyMa, pa3bpoca ToueK BOKPYT OKpYX-
HOCTH, YHC/IA TOYEK Ha OKPYXHOCTH H PaCCTOSHHA MEXIY LUCHTPAaMH JBYX NEPeKPHBAOLINXCA
OKPYXHOCTEH. Pesy/IbTaThl BHYHCIEHHH TOKA3ATH XOPOLIYIO YCTOHYHMBOCT HAIIEr0 aTrOPHTMa
K YPOBHIO LIYMOBOIO 3arpa3HeHHs. 3aTeM 3Ta TeXHHKa ObUTa YCIEIUIHO NPHMEHEHA K PEalbHbIM
M3IMEpeHHAM, nomydeHHbM B Au-Pb B3aumoneiictsusx na RICH-perextope ycTaHOBKH
CERES/NA4S. _
Pa6ora sunonxexa 8 Jlaboparopuu BeicokHx 3sepriuit OMSH.

1. Introduction

An important problem in the area of pattern recognition is curve recognition. In the
context of high energy physics, Cherenkov rings finding represents such a problem. This is
a combinatorial optimization problem: given a set of detector signals, one reconstructs
Cherenkov rings subject with different constraints. This is getting more important with
inventing such modern detectors as, for example, RICH (Ring Imaging CHerenkov) requi-
ring in each event the determination of parameters for tens or hundreds of rings formed by
Cherenkov photons. The presence of the background noise and the appearance of several
overlapping rings, along with the displacement* of the points from the circle, make inap-
plicable classical methods for circles fitting due to their noise sensitivity. Even the presence
of one single point outlier can distort considerably circle centre or radius estimations. The
same effect appears for double or triple crossing circles if you would fit them one by one
because of the influence of the new circle that is formed in the crossing area.

Artificial Neural Networks (ANN) techniques, and variations thereof, have shown great
power in finding approximate solutions to difficult combinatorial optimization problems
[10,7,9]. The ANN technique has also been used for the tracks finding problem [11,2] and
for a similar problem which is Cherenkov rings finding [4]. In [4] a non-adaptable network
was used for recognizing several circles in a given pattern with encouraging results.

Deformable templates and Hough transform algorithms were used first in image proces-
sing and visual pattern recognition fields. Deformable templates approach was used in [2,3]
for tracks finding problem in high energy physics. Other application of this approach can
be found in [6], where the authors proposed a modification of deformable templates
method, for the tracks finding problem, in case of data detected with high pressure drift
tubes. Also an implementation of the elastic arms approach to tracks reconstruction, using
object-oriented programming techniques, is described in [8].

An interesting method for circles fitting using RICH raw data is studied in [S]. In this
article the discrete structure of the detector was taken into account, a circle is to be fit not
to separate points, but to clusters of adjacent cells generated by the energy dissipation.

In our work a new deformable templates algorithm for circle reconstruction is presented
and its performances are evaluated. These deformable templates are initialized by Hough

*For real data the displacement is defined as the error in determining the coordinates of the signal points.
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transform. The algorithm effectively represents a merger between neuronic decision and
parameter fitting that are made simultaneously by solving the equation of  motion for the
analogous dynamic system. In other neural networks or classical approach one then has to
augment the algorithm with some fitting procedure. It would be advantageous to have an
algorithm that does both the assigning and the fitting simultaneously.

The elastic arms strategy is to match the observed events (data point) to simple para-
meterized models (circles). An unknown subset of these data points corresponds to noise
and should be unmatched.

These two methods, Hough transform and deformable templates, complement each
other. The conventional Hough transform procedure performs a low resolution search for
circles. It provides the approximate number of circles and a rough evaluation of centres and
radii. However the existence of non-perfect circles and noise points makes the standard
Hough transform less effective. Therefore a new fast Hough transform procedure is pro-
posed. It consists of two steps: first, the coordinates of centres are found and second the
corresponding radii are determined. In order to automatize the choice of the appropriate cut
of histograms and to handle the problem of splitting peaks we use local averages on histo-
grams. ’

The paper is organized as follows: An overview of the problem is in section 2. In
section 3 we describe a modified Hough transform. Section 4 contains the deformable
templates algorithm with a review of general method. Implementation issues, practical hints
and final results are presented in section 5. Finally, in section 6 the reader finds the con-
clusions.

2. Overview of the Problem

When a charged particle, with a momentum p, passes through a medium characterized
by a refraction index n, such that p > ¢ /n, it emits light around a cone whose angle 6 is
given by cos 8 = 1 /Bn, where B = v/c is the particle velocity related to the speed of the
light. This is called Cherenkov effect. From a front view the cone appears as a circle. As
the intensity in Cherenkov light is usually low, only a few photons are emitted which has
the result that the Cherenkov ring appears not like a full ring but only as several dots lying
on a circle*. The aim is to reconstruct the circle that passes through these points knowing
that this one can be deformed as the light originating from the particle usually goes through
different materials and therefore can be diffracted or even reflected. Furthermore, one has
to deal with some noise inherent to any low sensitivity detection.

In this article we reconstruct circles with radii in the [Rin, Rmax] range, knowing the
displacement (in case of Monte Carlo circles the input signal points are smeared adding a
randomly uniformly distributed value between zero and a maximum named displacement)
of the points from the circles and the required number of points per circle.

*The problem is considered here in a simplified view by omitting the influence of a detecting system, which
provides in fact a lot of small data distorsions and random displacement from the circle, This influence is overcome
on a preprocessing stage, although could be included in data processing explicitly like in [S].
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3. Hough Transform

The idea of the elastic arms algorithm is to match the observed events into a known
parameterized model. To ensure a fast convergence towards a high quality solutions
avoiding the local minima, the elastic arms algorithm must be initialized with approximate
values for the positions of the centres and the radii of the circles. Then, as a first step we
need a method that provides us the approximate number of circles and the approximate
values for their centres and radii. The Hough transform is appropriate for this task.

The use of the Radon transform, or in its discrete form, the Hough transform, is not
new in particle physics. A Radon transform of a density p(r) is defined by line integrals
over a special class of curves:

R(r,P) = | dep(r (1) + 1), M
where rp(t) is the curve specified by parameters p such that rp(O) =0, and r is a point on

the curve. If the phase space is discretized, Radon transform converts into the Hough
transform. Radon transform is intrinsic instable [12].

An event is defined as a set x = xi, x2,..., XN, of Np signal points. These x;’s are
bidimensional. Each event also corresponds to a set of circles (Cherenkov rings) and the
aim of the algorithm is to find these circles knowing x.

If we denote the coordinates of three arbitrary nonlinear points by (x;,y) i =1, 2, 3,
the circle which passes through these points has for centre the (xo, yo) coordinates

xo=% (xg —x§+)’§—)’§) 0, -yz)—(x? -x§+y%—y§) 0y = ¥y) ’ o
(ry =x3) O = ¥)) = () = %) O, = ¥3)
yo=% (xf —x%-*)’% —y§) (x, —X3)—(x§—x§+y§—y§) (x, - x,) , (3)
O =x3) O =¥ = (xp = %) 0, = ¥y)
and for radius:
R=\/(X,~-X0)2+(y,-—)’o)2, i=1,23 ()

Given a set of points, one can construct all the possible circles. This will give a set of
centres and radii. All these circles are drawn in the space of parameters. This space is then
discretized and the entries are histogramed, one divides the (xc, yc, Rc) space up into boxes
and counts the number of circles in each box. If the towers in the histogram exceed some
thresholds, then the corresponding parameter values define a potential circle.

As we said before, one makes a histogram in parameters space to find the most popular
parameter within the resolution. Because of the granularity (the dimension of the boxes on
the histogram) of the histogram and the precision of the calculus, even for a Monte Carlo
generated circle in the absence of the noise and without any displacement of the points from
the circle, we shall have many solutions for the parameters (xc, yc, Rc). These facts together
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with the existence of non-perfect circles and the noise makes the standard Hough transform
not so effective.

We therefore use a Hough transform which consists in two steps: first the centres are
determined and after that the radii are calculated using one by one the determined positions
for the centres.

There are some parameters that determine the quality of the procedure. Choosing these
parameters we must keep in mind all the time that:

* The deformable templates need in order to be initialized only rough solutions, we
don’t need a very good precision as in the case of other methods that gives candi-
dates for fitting.

¢ Itis easy to observe (see Fig.3) that for the elastic arms algorithm it is preferable to
deal with the situations in which the initializing set has some extra circles than it
would be initialized with a number of circles less than necessary, when it will lose
circles.

As a first step, using formulae (2), (3), we calculate the centres of the circles

described by each possible set of three points that accomplishes some geometrical cut:

* The distances between each pair of points must be smaller than the diameter of the
biggest possible circle defined by R . '

» The condition of nonlinearity of these three points.
In the space of the centres, we made a two-dimensional histogram (xv, Yo N), where

x, and ¥, represent the coordinates of the centres; and N, the number of possible combina-

tions in each box. Such kind of histo-
gram is shown in Fig.1.

The main problem is to extract
the information from the histogram,
i.e., to choose a level that defined
«the most popular parameters». It is
impossible to choose only one crite-
rion for all the possible cases, then we
used three concurrent types of cuts:

1. the number of possible com-

binations divided by three CR3NPP/ 3,

number of circles

where RNPP represents the required
number of points on a circle;

2. the average of N over the
histogram;

3. number three that represents
the minimal number of points that can
describe only one circle.

The level of cut will be the maxi-
mum between these three numbers. Fig.1. Two dimensional histogram of centres (x,, y,, N).

As we observed in practice, if the One Meonte Carlo circle with 10 points on it, noise/signal
level of the noise and (or) the number ratio is 100%, displacement of points from the circle is
of circles together (separately) grow 0.1 and the level of cut is 40
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up, the average over the histogram gives the cut. In the case of a small number of circles
and (or) a low level for noise the number of combinations dominates. If we have a large
displacement from the real circles and a small number of signal points, the number three
gives the cut.

In the second step, for each found centre we define a ring centered in the (xc, y‘) and

limited by R ., R . For each data point situated inside this ring we use eq.(4) to calculate

the polar radius related to this centre. Then, for each centre we made a histogram of these
radii. The histogram cut is chosen as the maximum between: the required minimal number
of points on circle divided by two, the average over the histogram and the number three.
All the time the granularity for the radius is chosen a little bit bigger than the granularity
for centres because of the ambiguities in determining the position of the centres. If we
obtain for one cehtre two possible radii or more we keep only this particular one that
corresponds to the highest tower on the radii histogram. At the first sight it seems the lower
granularity would improve the precision of our result. However it is not true. The granu-
larity of the histograms must be chosen very carefully. Some problems appear both at
smaller granularity and at larger one. If the granularity is too small, the computational
requirements grow very rapidly and some splittings of the peaks appear that results in
loosing «good» circles. We shall have in the same time false circles because the average of
the N over the histograms will decrease that means false solutions, wasting of computer
resources. If the granularity is too large,it will be possible to put together the combination
corresponding to two or more than two circles that results again in loosing of «good»
circles due to two mechanisms: the overlap of the solutions and the increase of the level of
cuts in both types of histogram. We must keep in mind in the same time that if we want to
find circles for which the displacement of the points is two times larger than the granularity,
we must increase the granularity.

In order to have better solutions (even in the case of splitting peaks or if the dis-
placement of the points from the circle is big) we give as good value for centres and radii,

not the centre of the square (or the segment) defined by granularity, but a weighted average
over the neighbouring cells.

This algorithm was implemented as a Fortran-77 subroutine in a main program.

4. Deformable Templates (Elastic Arms) Algorithm

The deformable templates algorithm is initialized by Hough transform. Having the
approximate number of arms and the corresponding initial values of the parameters from
the Hough transform as input, a neural network finds circles with a higher resolution.

4.1. Review of the Algorithm. As we said before, an event is defined as a set x = xi,
X2,..., XN, of Np signal points, where xx vectors are bidimensional. Each event also corres-
ponds to a set of rings (circles). In order to find these rings (circles), a set & = {x1,.., TM}
of M deformable templates, or elastic arms, is introduced, where an arm a is completely

described by its P parameters: ®; = (m‘, 1:5).
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We reduce the circle finding problem to finding minimum of the following energy
function:
N M

N M
E(S im=Y Y SM&m+LY (XS, - 12 )

id ia
i=la=1 i=la=1

where S, is a binary decision unit (neuron) defined as:

_[1 ifsignal i is assigned to arm a
ia | 0 otherwise '

(6)

Miq(x, ) is the Euclidean distance between signal point i and arm a. Since each signal
can belong only to one circle or to no circle at all, E must be minimized with the condition:

M
z S,.a =1or0 foreachi. @)
_ a=1
The parameter A imposes a penalty if 2 Sia = 0, that means, signal i is not assigned to
. .
any arm. In this way the parameter A governs the amount of noise the algorithm allows for.
In order to avoid local minima when minimizing E, one often introduces thermal noise
into neural system. A commonly used procedure for doing this is simulated annealing where
the neural system is allowed to be thermalized for a sequence of temperatures
Ty >Tyn-1>... > Tp according to the Boltzmann distribution [2], [1]:
coy 1 —BEAS Lm)
P ({S,a}’ 7‘) - Z € ’ (8)
where B=1/T and Z is the partition function.
We proceed by calculating the marginal probability distribution:

Py (m) =3 P({S,}®) ©)
(s,)

by summing out the neuronic degrees of freedom, S, We obtain:

_1 -BE (m
Pym) =7 e e®, (10)
where the effective energy is defined as:
1 - - BM.
Eeﬁ(n)=—3210g(e RiYe BJ (11)
i a

The most probable configuration according to eq.(10) corresponds to the minimum of
Eeff. Using a gradient descendent method to minimize Eetf one gets an updating rule:

A = n® et _ _ n® 3 Y oM,
a a 500 a & Via 5 (12)
a a
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A
where ng‘) is the updating parameter and the Potts factor V, 1is given by:

A e BMia .
Via = o . (13)
e— ﬁ’t + 2 e- BM
b=1

4.2. Circles as Elastic Arms. In our case the templates are circles with variable centre
and radius. The template is defined in this case by the coordinates of centre and by the
radius (Xa, Ya, Ra).

A circle (xg, ya, Rq) is given by the parametric equations:

Mt)=x,+R cos(t), yO =y, +R sin(), te0,2m). (14)

The Euclidean distance M;; between a circle (xg, ya, Ra) @ = 1,..., M and a signal point
(xi,yi) i=1,..., N is given by:

Miig Yo Ry 503 = NG, = )+ 0, = )2 = R, (15)

Using the energy function for elastic circles (xq, ya, Ra) as eq.(S) and the effective
energy as eq.(11) we obtain the updating rule for circles:

oE

A=, -nZ o,
aE BM
-n, 5 ay =-mn, Z ; ay a={l,.. M}, (16)
oE

eff _

AR_'“aak “Zwak’

where 1 is the updating parameter for the coordinates; and 112 , for the radius. Vi is the

Potts factor (eq.(13)).
The derivatives of M, with respect to the parameters are:

oM. X —x

ia _ a i

Vi, - x2+ (0, - )

sign (V(x, - x)% + 0, - y)* - R)), an

oM. Y.~

.\j( )2 o )2 sign (\/(xa - x'.)z + (ya - yi)z - Ra)’ (18)
xa - x'. + P yi

oM,
T =58 OV, =57+ 0, -3 - R) (19)
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4.3. The Behavior of the Algorithm. The templates have Gaussian distributions centered
around the arm values with width of Gaussians depending on the temperature. When the
temperature is high, each arm can attract many signals, the arm having a large sensitive
area. The relative importance of the different signals is measured by the Potts factor
(eq.(13)). Also the Potts factor implicitly contains a repulsive force between each two arms.

This interaction between arms is generated by the sum Z e BMib. Considering only two
b=1
circles a and b with xz > xp, the interaction force between them has the expression:
oE JE
ff eff
-_V [3 i
Fo Eq= Ax, — x ) a(y ¥) J (20)
Its projection on Ox axis is:
3E, M M,
a(x - x,) =Z z a(x x,) @h
i c=ab '
and with the following geometrical relation between M, and x —x;
x —x =VR +M P+ (R +M,) (22)
a b a ia b ib
finally we have:
8 X, =X
b
T AL I
ic=a ,
In eq.(23) (xa - xb) > 0 and Vic is the Potts factor (eq.(13)) always greater than zero.
Analogous for Oy axis:
JF -,
(Fp), = =30, -y) _yb)=z,2 ,C—R >0 (24)
ic=ab

This repulsive force is a winner-takes-all structure. If the coordinates of the centres are
the same (x4 = xp and y; = yp), the repulsive force vanishes (Fgp = 0).

The repulsive force, generated by the Vj, term, is useful when the main problem is to
separate two overlapping circles (Fig.2) but it is also an important source of local minima.

.. -~ BMp . - BMia . .
Many local minima appear when the sum 2 e is not e . To avoid this, we use a
b=1

new simplified form of Potts factor without interaction between circles:

e_ BMia

Vo= =, (25
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e The A parameter governs the
c r . . .

e mel me2 relative importance of signals that
%’m : are not associated with a circle. If
5 we have noise we must increase A
£ . .

£ according to the noise level.

z B interaction

To change dynamically the up-
date rates and to know and penalize
the situation when a circle is in a
local minimum we define a new pa-
rameter associated with a circle: the
number of points per circle at one
moment in time (NPP).

We say that a circle is captured
by a local minimum when it stays
long time (few iterations) in the

dlstance.  same position in the parameters

"+ without interaction

13 28

Fig.2. The influence of the repulsive force. One histogram Space (xc, Yo Rc) having only one,

uses Potts factor, eq.19 (with interaction); and other, eq.25 two or three points on it.
(without interaction) For such cases, we increase the
updating rates and move randomly
this particular circle in another place of the space of parameters. It is like increasing the
temperature only for that circle.

If NPP is equal or more than the required minimal number of points on a circle, the
circle is a «good» one and we decrease the update rates for it. When NPP is zero the update

rates increase at initial values. Thus update rate is defined as:

Minimum updat if NPP > Required NPP
updat[a] ={ Maximum updat if NPP =0 . (26)
Medium updat other else

If the algorithm is initiated by too many arms by the Hough transform, the extra circles
can be:

1. attracted to noise;

2. attracted to points belonging to Cherenkov rings;

3. attracted to a circle upon which another arm has already settled on.

4.4. Computer Simulation. We implemented successfully the deformable templates
algorithm as a C subroutine of a main program. Translation of the C code to C++ code is
easy because the C structures defined can be redefined as classes and the functions as
member functions or friend functions of these classes (see [8]). In this subsection we give
a set of prescriptions and hints of how to ensure a good and rapid convergence in a way
that is as problem independent as possible, how to avoid getting stuck and how to go out
from local minima.
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There are many parameters that must be properly set up. A neural networks are very
sensitive to these parameters. One of them is the temperature. A nonlinear phenomenon like
phase transition which appears at a specific temperature determines different behavior of the
neural system for different temperatures.

At the starting temperature T, a set of template arms is placed according to the Hough
transform values for the parameters (xa, Vg Ra). As the temperature is lowered the different

arms are attracted, with different forces, more intensely by the nearby signals. Next step is
to minimize effective energy E ({x,y, R }) (eq(11)) using the gradient descent

equations (eq.(16)).

As we mentioned earlier the width of Gaussian around each arm depends on the tempe-
rature, therefore 7, and T, should be chosen with respect to magnitude of the dynamic

range. If the high temperature T, is too high, it can destroy the initial Hough configuration.
If it is too low the simulated annealing will not work properly. If the final temperature T 7

is not low enough, the level of neural networks noise would be too high and can destroy a
good configuration.

In eq.(12), the partial derivatives aEeff/ axa, aEeff/ 8ya, BEeff/ aRa have different mag-

nitudes. We must therefore use one update rate for radius and another one for coordinates
of the centres. It is useful to have a dynamic change of updating rates for each circle
because one circle can have, in one moment during its evolution, zero points on it and
another one can have a lot of points on it. Each circle has its own updating rates. When
initiating the update rates we want a smooth transition of the parameters from Hough
parameter values again; if the initial values of the updates are too big, we destroy the
Hough configuration; if they are too small, the configuration of circles will not change
enough.

The magnitude of the partial derivatives depends strongly on the magnitude of our
signal coordinates (xi,yi). In order to make the update rates less dependent on different
applications we rescale all signals to some predefined dynamic range. Because of that we
shall give our result in some conventional units.

The gradient descent method is only one way of minimizing E . A very simple way

to improve the gradient descent method is to introduce the so-called momentum term. Each
degree of freedom ®, is given some inertia of momentum. In other words Ar (1) get a

contribution from Ana(t — 1) according to [2]:
Am (6) = — 1']VEeff + oAz (- 1). v4))

This means that n, feels an average downhill «force» when moving on the energy

surface. We introduce momentum term to prevent the energy from oscillating and to make
the minimizing more effective. The o parameter is taken as 0.5.
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Deformable templates algorithm checks whether the radius of elastic circles has values
in the input range R i R_.J the centres are on the detector area and all circles have at

least the number of points per circle equal to the required minimal number of points. There
are other characteristics of the output circles that are not checked, for this reason we intro-
duced some final cuts. The elastic arms algorithm does not check if there are very close
circles, which can be considered as the same circle. Therefore, if we obtain two or more
circles with very close centres and approximative equal radii, we keep as good circle only
one of them.

When we work with large displacement of points from circle we observe some situa-
tions in which a pair of circles situated in the same region have many points in common.
If one circle has all its points included among the points that defined other circle, we shall
keep as a good, the only one of circles with the biggest number of points on it.

For real data, clusters of signals appear many times on the detector then we obtain, as
output of deformable ‘templates, some circles with a non-uniform angular distribution of
points on the circle. That kind of circles must also be eliminated by final cuts.

Summary of the Method. A summary of elastic arms algorithm is presented below:

1. Obtain an initial set of arms (xa, Yy Ra) a=1, NHough

2. Rescale the signals (x;,y;) and arms (x, Vg Ra) to the dynamical range.

from Hough transform.

3. Choose the initial update rates according to the dynamic range.
4. Choose values of A, T, T,.

5. For a sequence of temperatures [2] T =kT _,, k=0.95, update according to
eqs.(16) and:
5.1. Check the NPP and change update rates according to the rules (eq.(26)).
6. Make it converge at T =T, until F . is not changing, by lowering the update
rates {2]:
n.=en, mn,=en, €=09.
At each loop:

6.1. Check the NPP and change update rates according to the rules (eq.(26)).
6.2. Check for local minima.
7. Make cuts.

5. Simulation and Results

We study in case of one Monte Carlo circle as input, the output of algorithm using
different values for displacement of points from circle, uniform distributed noise, fixed
number of points per circle

To study the influence of the displacement of points from circle, 1000 events were
generated with one Monte Carlo circle, having ten points per circle and radius 10, using a
noise/signal ratio 100%. The detector area in which the circle was generated was 42 x 42
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Fig.3. Probability to obtain zero, one or two circles after
Hough (line) and after deformable templates (dash-line). In-
fluence of the displacement (a), of the noise/signal ratio (b)
and of the number of points per circle (c)

(in the same units). The probability to obtain no
circle is represented in Fig.3a (bottom) for different
displacements in the range [0, 0.5] (in the same con-
ventional units). As we can see there is not a strong
affect of the displacement on the number of circles
obtained as output in the range [0, 0.3]. The prob-
ability to lose a good circle grows up slowly with the
displacement. The dash line corresponds to the
output of deformable templates; and the solid line, to
the results given by Hough transform. In Fig.3a (up),
the probability to find one circle, that means a right
result, is represented. We observed that the probabi-
lity to obtain a good result is very high and de-
creases slowly when the displacement grows up. We
obtained «good» results in 80% of cases for 0.5 dis-
placement.

In Fig.3b it is shown in which way the variation
of the noise/signal ratio modifies the probability to
find one circle (up), respectively two circles
(bottom). We used Monte Carlo circles generated
under the same conditions, 0.1 displacement and the
noise/signal ratio in the range [0, 200%]. It is easy
to observe that: the probability to find only one

circle decreases when the noise/signal ratio increases .

because noise points can form other circles, then the
probability to find more than one circle increases.
Deformable templates are less sensitive to noise than
Hough transform. Many times, when Hough trans-
form output contains one or very seldom two supple-
mentary circles (for one Monte Carlo circle as
input), deformable templates will have only one out-
put circle, the second circle will be the same as the
first after convergence or disappears. This explains
why the Hough transform curve is below in Fig.3b
(up) and above in Fig.3b (bottom). We can observe
that the increase of the noise/signal ratio results in

the appearance of false solutions. The probability to
100% noise/signal ratio.
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2 1000 Fig.4. Histogram of the distance between the centre of Monte
: - i Carlo generated circle and the obtained circle* for 0.01 and
% isplacement = 0 s . A X

s — - —ge—.o— . — -— — .o 0.2 displacement, 100% noise, 10 points per circle (a); for
2 displacement = 0.1 s . A

£ . i 0%, 100% and 200% noise, 0.1 displacement, 10 points per
€ displacement = 0.2

wo o —im o =i —ee — .. —.— . circle (b) and for 6, 8 and 10 points per circle. (0.1 dis-
placement, 100% noise) (c)

wlh — - - - - - = = =

*As we have shown, in case of noise data we obtain sometimes
i 2 output circles (less than 1% of cases for 100% noise/signal ratio,
i 0.1 displacement and 10 points per circle) (Fig.3b). In this case we
put into the histogram the distance between the MC circle and the

775+ closest output circle [13]
distance

The probability of obtaining good solutions is
..o very sensitive to the number of points per circle

7; I noise = 0 i (Fig.3c). Under the same conditions we generate
o T soise =100 — ~ Monte Carlo circles described by ten, eight, six and
© B noise = 200 : four points. We can observe that, when the number of
B 7 7, points per circle decreases, the probability to lose
B j solutions grows up, being approximately 20% if we

|

' want to reconstruct circles described by no more than
=} - - - - - - - — - four points. The probability to obtain good solutions
| is in the same case 60% that means that in case of
N Y BT TRE TR o.m{:: four points on circle sometimes false solutions
appear. This probability grows up very rapidly with
b the number of points per circle, being 80% for six
points per circle and almost 100% for eigth, respec-
i tive ten points per circle. The probability to lose the
- -+ solution is almost zero for six, eight, ten points per
| circle. The situation in which we lose solutions is
- more disadvantageous than the situation in which we
' obtain false solutions because, in the latter case, the
1 false solutions can be eliminated by the final cuts.
We studied the precision of the method using a
! statistics of the absolute values of the distances bet-
ween the centre of Monte Carlo circle and the centre
s e sT s e oo o e s of the corresponding output circle given by defor-
c mable templates.

We study how the precision depends on variations of displacement, noise/signal ratio,
required minimal number of points per circle. We observe that the influence of the
displacement is very important. Very small variations in the displacement value result in
important modifications of the shape of the histograms. In the absence of the displacement
in more than 95% of the cases the distance is less than 0.01. This distance grows up very

number of events
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rapidly with the displacement being in the same percent of cases twenty times bigger in the
case of 0.2 displacement. If the displacement increases from 0 to 0.2 the information carried
by useful points decreases. For the 0.2 displacement the error in measuring centre has the
same value 0.2. Almost all histograms of distance will spread into [0, 0.2] range (Fig.4a).
The influence of the noise is shown in Fig.4b. As we can see the noise influence is not
important in this situation. Even for 200% noise/signal ratio in more than 80% of cases the
distance is less than 0.01. Then we can observe that the algorithm is very robust to noise.

We studied the influence of number of points per circle in the range 6 + 10 at 0.1
displacement and 100% noise/signal ratio. As we could see, the influence of the number of
points per circle is more important than the influence of the noise/signal ratio. The precision
of results decreases with the number of points per circle because the amount of information
about the circle decreases.

The histograms in this case depend strongly on displacement. In Fig.4c we use 0.1
displacement and different number of points per circle. If the displacement increases the
required NPP must be increased to maintain the same amount of information about the
Monte. Carlo circle.

Deformable template approach performs a simultaneous fit of circles. When two circles
are present, from one circle point of view, the points corresponding to other circle are noise
points. If two circles are very close and have the same radius, the relative disturbing effect
increases.

The histograms of x coordinates of centres for two crossing circles, without interaction
(given by Potts factor (eq.(25)), are shown in Fig.5a corresponding to three various dis-
tances between centres. The most difficult case when circles have the same radius was
chosen. Each elastic arm is attracted by both sets of points. The attraction force increases

" o
H mcl(abic) mec2(a) S [ mei(abo) me2®) o)
o s |- WK disuance = 3.5 H
3 % distance = 2.5 g
H .
o R distance = 2.2 B e | W distance = 3.5
Eow [ E oy
3 H @ distance = 2.5
5% distance = 2.2
s
s
2¢0
1908
n E-4 n £ 21 k4 k] ¢ k23 22 E- ] 24 E L 27 L]
distance distance
a b

Fig.5. Histograms of x coordinates of centres for two crossing circles at different distances
without interaction (Potts factor, eq.25) (a) and with interaction (Potts factor, eq.19) (b)
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" when the distance decreases. The effec-
tive energy for only one elastic circle
creates an asymmetrical shape of the
histograms. Also when the distance
decreases the distribution of centres
becomes wider and the probability to
have a small distance between output
centres decreases as we can see at dis-
tance 2.2.

Using Potts factor (eq.(13)) the
circles will interact, and as we demonst-

°
°
®
9%
)
°
°
®
o o ©

. . rated in subsection 4.3 a repulsive force
o . o . will change the behaviour, of two cros-
- sing circles. Figure 5b shows a histogram

e eo

represented under the same conditions as
in Fig.5a, but we use eq.(13) instead of
€q.(25) to compute the Potts factor. As
one can see the repulsive force will gene-
rate the decrease of the attractive force of
points belonging to other close circle.

3.1. Real Data. This technique was applied to real data obtained in lead-gold inter-
actions from RICH detectors used in CERES/NA45 experiment. The RICH detectors are
principally used as hypothesis testing devices to identify a particle with a known momen-
tum using 6 and a number of photons emitted by the particle.

In our example we identify pions with p,>4.5 GeV (asymptotic radius = 16.2 pads) in

Fig.6. Output of the algorithm (RICH 2, detectors
from CERES NA4S experiment)

RICH 2. In Fig.6, all results of the ring reconstruction that can be given by pions (we use

Rmin =5, Rmax = 17, displacement = 0.2) and number of points per circle > 6 are shown.

Looking at the results we may say that the deformable templates algorithm is useful in
identification of rings given a very good simultaneous fitting with a satisfactory efficiency.
During data analysis we observed that the choice of parameters (required NNP, displace-
ment, range of radii) in accordance with the experimental set-up is very important for the
algorithm ability to recognize the Cherenkov rings.

6. Conclusions

Pattern recognition has always been an important part of high energy physics data
analysis. We propose a circle finding method that combines the matching and the fitting
problem into a single algorithm. It goes from coarse to fine resolution by using a Hough
transform to initialize a set of elastic arms. A simultaneous fitting of these input arms is
performed by deformable templates method finding the circles with high precision. The
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elastic arms approach is very similar to human processing for this kind of recognition
problem. A human being looks for circles in a global way and then makes fine-tuning
adjustments. Our approach gives rise to high quality solutions. It is straighforward to be
implemented on a parallel processor.

Our use of Potts factor as a repulsive force is similar to using robust weights [5].
Therefore the algorithm is closely related to robust statistics, it ignores noise data to a
required level. The elastic arms approach has the advantage of being flexible to host a
variety of experimental set-ups. With elastic templates method the templates have a fuzzy
edges, which play a very important role in the dynamics by smoothing over local minima.
At first, when temperature is high, those edges should be wide and then adiabatically
reduced as the template homes in a true minimum.

The method could be generalized to arbitrary dimensions with arbitrary templates, as
long as those templates can be parameterized. Elastic templates method is well suited to
complex pattern recognition tasks where a priori knowledge constrains strongly the possible
classes of patterns. Thus for complex high energy problems all the information known a
priori must be used to extract the pattern from the data. .

On a practical side, elastic templates dynamics offers the advantage of being able to
deal directly with continuous data distributions and to perform automatically an adaptive
nonlinear fit to that data.

Concluding, we can say that our deformable templates algorithm is a considerable
contribution to pion physics since it can be applied in cases of arbitrary ring radii where
known conventional algorithms are helpless.
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